首页 >> 报告讲座
作者: 来源: 发布时间:2019-02-01

报告题目:

杰出学者讲坛():无穷维动力系统的渐进行为研究最新进展

报 告 人:

孙春友 教授

报告人所在单位:

兰州大学数学与统计学院

报告日期:

2019-02-01 星期

报告时间:

1430-1530

报告地点:

第一教学楼131

报告摘要:

摘要: 自治系统所决定半群的整体吸引子,非自治系统所决定过程的核截面和随机动力系统的随机吸引子三个概念之间的差异,找出了三者之间的相互关系,并阐述了从整体吸引子到随机吸引子的研究发展过程。 整体吸引子是无穷维动力系统理论中一个关键性的概念,是近三十年来数学和数学物理领域中的最重要的发现之一。核截面是吸引子在非自治系统中的推广。在整体吸引子和核截面的概念,研究了整体吸引子、核截面Hausdorff维数的估计方法,比较了二者概念之间的差异和方法上的异同。 利用核截面理论及其估计Huasdorff维数的方法,分别研究了具有依赖于状态的阻尼系数,具有非退化的Kirchhoff

简介兰州大学数学与统计学院教授主持3项国家自科基金。将非线性分析的思想方法与无穷维动力系统理论相结合,研究无穷维动力系统吸引子相关问题,特别是无穷维动力系统吸引子的存在性、维数估计、吸引速度估计、渐近正则性、有限维降维、时空复杂性等。截止目前,发表学术论文40余篇,多篇论文发表在研究领域的主要期刊上Transaction Amer. Math. Soc., J. Differential Equations, SIAM J.Applied Dynamical Systems, Proceedings Royal Society Edinburgh, J. Evolutionary Equations, Nonlinearity等。

本年度学院报告总序号:

1


下一条: 无

COPYRIGHT© 曲靖师范学院数学与统计学院 | 地址:云南省曲靖市经济技术开发区三江大道 | 邮编:655000

电子邮箱: stxy@mail.qjnu.edu.cn | 电话:(+86) 0874-8965130